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1. Introduction

Over the past 20 years we have come to learn that all strong and electroweak phenomena

below the scale of a few hundred GeV can be well described [1] with high precision by renor-

malizable Yang-Mills gauge theories as encoded in the Standard Model (SM) Lagrangian.

Of course within this realm some issues remain to be addressed, such as the origin of elec-

troweak symmetry breaking (which we hope to resolve from data provided by the LHC)

and the origin of the fermion family structure. Similarly, the description of gravity via

Einstein’s General Relativity (GR), as encoded in the Einstein-Hilbert (EH) action, has

been proven remarkably successful over a wide range of scales from the sub-millimeter [2],

to interplanetary [3], and even cosmological distances [4]. Here, too, some issues remain to

be addressed such as the nature of the (apparent) dark energy/cosmological constant. The

next broad question to answer is how to unify our description of gravity with those of the

other three forces, i.e., how do we construct a quantum theory of gravity. This problem

is long-standing and has been the subject of much labor over the last half-century [5], and

our perspective on possible ways to resolve this problem have evolved significantly over

time.

The essential issue with constructing quantum gravity in the standard approach is that

the EH action leads to a quantum field theory which is not perturbatively renormalizable,

unlike the case of Yang-Mills theories. This can be most easily seen by examining the inter-

action of gravitons with matter (or their self-interactions) in any fixed metric background.

Distinct from the case of Yang-Mills theories, where the interactions of gauge fields with

matter or each other correspond to dimension-4 operators (in 4-dimensional spacetime),

the gravitational interactions correspond to operators of dimension-5 (or higher) leading

to non-renormalizability by simple power counting. This implies that the theory is not

well-behaved in the ultraviolet (UV). In particular, this approach implies that (4-d) grav-

ity becomes strong near the reduced Planck scale, MP l, so that we usually treat GR as an
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effective theory at energies far below that scale. As we have been recently reminded [6],

Weinberg [7] long ago pointed out that there are only four known approaches to dealing

with this issue, and they have not evolved qualitatively since that time:

• The EH action in 4 dimensions is incomplete; new physics must be added that some-

how tames the poor perturbative UV behavior of GR. This is the path followed by

String Theory (where extra dimensions, supersymmetry, new fields and a new scale

enter) [8] as well as in Loop Quantum Gravity (which also introduces a new scale) [9].

This approach has received the most attention in recent years and has met with a

number of successes.

• Gravitons are not fundamental objects but are composite; this possibility has been

addressed by a number of authors [10].

• The poor UV behavior of GR in 4-d can be controlled by a re-ordering of the conven-

tional perturbation expansion employing a modified version of the Yennie, Frautschi

and Suura [11] resummation techniques. This approach has recently been advocated

by Ward [6].

• The poor UV behavior of GR is an artifact of perturbation theory. General Relativity

is non-perturbatively renormalizable having the property of being asymptotically safe

due to the existence of a non-Gaussian fixed point; such an approach has also met

with a number of recent successes [12]. The existence of such a fixed point has been

demonstrated in both field theoretical and in lattice studies [13] in 4-d as well as

in higher dimensions [14]. In such an approach, the running gravitational coupling

becomes weaker as the fundamental gravity scale is reached.

A common feature of the last two approaches is that the strength of the gravitational

interaction, usually expressed through Newton’s constant, GN , runs in such a way that

the effective coupling actually becomes weaker in the energy regime near MP l. This would

imply good high energy behavior and, perhaps, the restoration of unitarity in graviton scat-

tering amplitudes. Could such ideas be tested in, e.g., collider experiments? Clearly, to do

so collision energies must approach the fundamental scale of gravity, which is unattainable

4-dimensional gravity. However, the property of asymptotic safety has been demonstrated

to persist in higher dimensions [14] where we know that we can construct scenarios where

the (true) fundamental scale of gravity is of order ∼TeV, such as in the models of Arkani-

Hamed, Dimopoulos and Dvali(ADD) [15] with large extra dimensions and of Randall and

Sundrum(RS) [16] with warped geometries. In this paper, we will demonstrate that if

either the ADD or RS models are realized they, will provide a framework for testing the

hypothesis of asymptotic safety at the LHC and ILC through the appearance of gravita-

tional form-factors which will damp the strength of gravity at high energies. As we will see

below, such form-factors will lead to significant modifications in the traditional predictions

for both of these scenarios. These deviations from the standard predictions can then be

used to test the nature of the form factor and to determine if a consistent theory along

such lines can be successfully constructed.
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The outline of this paper is as follows: In section II, we will provide the essential

background formalism for applying the approach of asymptotic safety to both the ADD and

RS extra-dimensional models. In sections III and IV we will examine how the traditional

signals of the ADD and RS models, respectively, at future colliders are modified and the

parameter space range over which they may be observed. A discussion and a summary of

our results can be found in section V.

2. Background formalism

Here we present the formalism that is relevant to our analysis. A general review of non-

perturbative renormalizability and asymptotic safety is clearly beyond the scope of the

present work, but can be found in the introductory survey by Niedermaier [17]. We work

in Euclidean space within the context of an effective average action that consists of a

truncated list of operators which are part of a more generalized gravitational action. The

simplest choice for this fixed set of operators is the Einstein-Hilbert truncation. This action

is simply given by the familiar expression in D-dimensions,

SEH =

∫

dDx
√−g

[

MD−2

2
R − Λ

]

, (2.1)

where M is the D-dimensional Planck scale, R is the Ricci scalar, Λ corresponds to the

cosmological constant, and D = δ + 3 + 1 where δ is the number of additional spatial

dimensions.1 Newton’s constant in D-dimensions can then be defined in analogy with 4-

dimensional expression as GD = 1/(8πMD−2). For convenience, we define a corresponding

dimensionless quantity,

g(µ) = µD−2GD , (2.2)

where µ is an arbitrary mass scale. Our goal is to obtain the renormalization group

equations (RGEs) for this dimensionless gravitational coupling and we are particularly

interested in the RGE behavior of g in the ultraviolet (UV). It has been found that the

qualitative nature of this behavior is not very sensitive to the truncation in the gravitational

theory employed above where only the EH term appears in the action [12].

Following Bonanno and Reuter [18], the relevant RGE corresponding to the action

above is found to be
dg

dt
= [D − 2 + η]g , (2.3)

where t = log(µ) and η is the non-perturbative anomalous dimension of the EH operator

given by

η =
gB1

1 − gB2
. (2.4)

1For consistency with the structure of the ADD model, we drop the cosmological constant term from

the above action in our ensuing discussion.
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Here, the constants B1,2 can be expressed in terms of a set of integrals which effectively

result from loop summations:

B1 =
1

3
(4π)1−D/2

[

D(D − 3)φ1 − [6D(D − 1) + 24]φ2

]

B2 = −1

6
(4π)1−D/2

[

D(D + 1)φ̃1 − 6D(D − 1)φ̃2

]

, (2.5)

where the integrals are explicitly given by

φ1 =
1

Γ(D/2 − 1)

∫ ∞

0
dz zD/2−2 Q − zQ′

z + Q

φ2 =
1

Γ(D/2)

∫ ∞

0
dz zD/2−1 Q − zQ′

(z + Q)2

φ̃1 =
1

Γ(D/2 − 1)

∫ ∞

0
dz zD/2−2 Q

z + Q

φ1 =
1

Γ(D/2)

∫ ∞

0
dz zD/2−1 Q

(z + Q)2
. (2.6)

Here, Q is an essentially arbitrary smooth cutoff function with the properties Q(0) = 1 and

Q(z) → 0 as z → ∞, and the derivative is defined by Q′ = dQ/dz. We take Q = z/(ez−1) in

explicit computations and define the parameters ω = −B1/2 and ω′ = ω +B2 as suggested

in [18]. The RGE is now seen to exhibit two fixed points where β = D − 2 + η = 0: (i) an

attractive infrared (IR) Gaussian (or perturbative) fixed point at gIR = 0 and (ii) an UV

attractive non-Gaussian fixed point where gUV = 1/ω′.

The RGE differential equation above can be solved analytically. Taking µ = µ0 as a

boundary condition and defining g0 ≡ g(µ0) we obtain

g

(1 − ω′g)ω/ω′
=

g0

[1 − ω′g0]ω/ω′

( µ

µ0

)D−2
. (2.7)

This solution, in itself, cannot be solved analytically for g(µ) in closed form. However,

a numerical analysis shows that ω ≃ ω′ to order ∼ 10%; this allows for an approximate

analytical solution to be obtained which is given by

g(µ) ≃ (µ/µ0)
D−2g0

[1 + ω(µ/µ0)D−2g0 − 1]
. (2.8)

Rewriting this result in terms of the D-dimensional Planck scale and taking the limit

µ0 → 0 yields the effect of this RGE evolution on the gravitational coupling in the ADD

model. This leads to a mapping into an effective D-dimensional Planck scale of

1

MD−2
→ 1

MD−2
eff

=
1

MD−2

[

1 +
ω

8π
(

µ2

M2
)D/2−1

]−1
, (2.9)

which is then used in the D-dimensional coupling of the graviton field HAB to the matter

stress-energy tensor, TAB , i.e.,

L = −TABHAB/MD−2
eff . (2.10)
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We can instead write this rescaling relation as

1

MD−2
→ 1

MD−2
F (µ2) , (2.11)

where F can be treated as a form factor now appearing in the effective coupling which we

can rewrite as

F =

[

1 +

(

µ2

t2M2

)1+δ/2]−1

, (2.12)

where δ = D − 4 is the number of additional dimensions. Numerically, we find that the

parameter t (which is trivially related to ω) is quite close to unity assuming that 5 ≤ D ≤ 11

as is true for all the cases of interest to us here. In our analysis below we will treat t as an

O(1) free parameter to allow for uncertainties in the calculation above which arise from,

e.g., the truncation of the EH action, our specific choice for the function Q, and the small

violation of the ω ≃ ω′ relation.

Note that this form factor ensures that the gravitational coupling is unaffected at low

energies and retains the value of the fundamental Planck scale, but then runs with increas-

ing energy. The derivation of this form factor has not relied on the background metric

and hence it can be equally well applied to the case of warped geometries as well as flat

dimensions, provided that, for simplicity, the possibility of a running cosmological constant

is neglected.

In order to quantify the effect of this form factor in the collider signatures of either

the ADD or RS models, we need to relate the quantity µ to physical parameters in the

production process; this issue is similar to that of the apparent scale ambiguity in QCD

in computations performed at finite order in perturbation theory. In reactions mediated

by s-channel kinematics, which are typical of graviton exchange or resonant production

processes in the ADD or RS models, it is natural to take µ2 = s so that in such cases the

form factor becomes

F =

[

1 +

(√
s

tM

)δ+2]−1

. (2.13)

Thus in the graviton exchange process in the ADD model, which is described by a cutoff

parameter ΛH [19, 20], the corresponding result for the cross section including the form

factor can be obtained by making the replacement

Λ4
H → Λ4

H

[

1 +

(√
s

tM

)δ+2]

. (2.14)

Note that this renders the predictions for graviton exchange explicitly dependent on δ,

which does not occur within this formalism in the traditional ADD scenario. Since ΛH ≃ M

in ADD, we can also make the substitution tM → t′ΛH , where t′ is another O(1) parameter.

(In our analyses below we will not make the distinction between t and t′.) Note that for

fixed ΛH , the effect of the form factor increases as t (or t′) take on smaller values. In other

processes, such as graviton emission in ADD, there is more ambiguity in the identification

of the scale µ. Here, one may choose from several different kinematic quantities such as

the emitted graviton’s energy or pT . This ambiguity will affect the numerical values of
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the cross sections in detail and we will thus present results for several different choices for

this scale. However, as we will see below, our qualitative results are insensitive to this

uncertainty.

We now examine the effects of this form factor in the collider signatures for the ADD

and RS models and determine whether the resulting suppression in the strength of the

gravitational coupling is observable in these scenarios.

3. Large extra dimensions

In this scenario [15], the Standard Model fields are confined to a 3-brane in the higher di-

mensional bulk and gravity alone progrates in the additional dimensions. The 4-dimensional

Planck scale is related to the fundamental scale M via

M
2
P l = VδM

2+δ , (3.1)

where Vδ is the volume of the extra dimensional space. Taking M ∼TeV eliminates the

hierarchy between MP l and the electroweak scale. A vast number of studies have been

performed investigating the consequences of this framework [19]. Here, we explore the

modifications in the high energy collider signals that are introduced by the presence of a

running gravitational coupling as represented by the form factor in eq. (2.12).

We first examine the effects of the form factor in unitarity considerations in high energy

2 → 2 scattering. In this model, the Kaluza-Klein (KK) tower of gravitons contribute to

such processes via virtual multi-channel exchanges. The operator for this transition takes

the generic form [20, 21]

L ≃ i
4

Λ4
H

T µνTµν + h.c. , (3.2)

where the scale ΛH represents a naive cutoff that regulates the integral over the sum of KK

graviton propagators weighted by the density of KK states. ΛH is of order the fundamental

scale M , with the exact relationship between the two being governed by the full UV theory.

At high energies, the 2 → 2 s-channel graviton exchange amplitude grows as, e.g., s2/Λ4
H ,

and thus exhibits extremely poor behavior in the UV limit, violating perturbative unitarity

when
√

s >∼ ΛH . Here, we explore whether the µ/tM term in the form factor governing

the running gravitational coupling can regulate this amplitude at high energies for some

values of the parameter t. We first examine the case of 2 → 2 Higgs boson scattering,

i.e., hh → hh, as that is claimed [22] to be the most sensitive process to the UV behavior

of this theory. Including the form factor as discussed in the previous section, setting

µ2 = s, and computing the tree-level J = 0 partial wave amplitude a0 for this scattering

process, we obtain the results displayed in figure 1. Here, we show the maximum value that

2Re|a0| obtains as the ratio
√

s/ΛH is varied, while holding t and δ, the number of extra

dimensions, fixed. A good test of unitarity in 2 → 2 scattering is that the zeroth partial

wave amplitude be bounded by |a0| < 1/2 for all values of s. We see that for all values

of δ this condition is satisfied once the form factor is included, provided the parameter

t . 2. As a second example, we also examine the process e+e− → f f̄ , following the same

procedure. The results for the maximum value of the zeroth order partial wave amplitude

– 6 –
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Figure 1: The maximum value of the J = 0 partial wave scattering amplitude as
√

s/ΛH is varied

for (top panel) hh → hh and (bottom panel) e+e− → f f̄ as a function of t. The curves correspond

to δ = 2, 3, 4, 5, 6, 7 from bottom to top on the right-hand side.

for this process are shown in the bottom panel of figure 1. We see that in this case, the

bounds from perturbative unitarity are somewhat weaker, requiring only that t . 8 or so.

Note that the values of t which allow for good UV behavior of this theory agree with the

more theoretical expectations discussed in the previous section, which predicted t to be of

order unity. Following these guidelines, we will take t ≤ 2 in our ensuing calculations.

We now turn to the conventional collider signatures of this scenario. The first class of

processes that we consider is the contribution of virtual KK graviton exchange in Drell-

Yan production, pp → ℓ+ℓ− + X, at the LHC. This contribution proceeds through the

operator given in eq. 3.2, and involves qq̄ and gg initial parton states. The same cutoff scale

– 7 –
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Figure 2: The event rate per bin with 100 fb−1 of integrated luminosity for Drell-Yan production

at the LHC as a function of the lepton pair invariant mass with δ = 3. The red (blue) curves

correspond to scale ΛH = 2.5 (4.0)TeV. In each case, the top curve is the result in the ADD model

without the form factor [20], and the bottom curve includes the form factor with t = 1. The error

bars represent the statistical errors. The black histogram corresponds to the Standard Model event

rate.

ΛH is employed and when including the form factor parameterizing running gravitational

couplings, the scale µ in the form factor is set to
√

ŝ as discussed above. The unmodified

graviton exchange amplitude behaves as ∼ ŝ2/Λ4
H and we expect the form factor to modify

the production cross section at high energies. Figure 2 shows the number of events for 100

fb−1 of integrated luminosity as a function of the invariant mass of the final state lepton

pair, with and without the form factor, taking t = 1 and δ = 3. We see that the form factor

has a dramatic effect on the production cross section and results in a sharp reduction of

the event rate at high invariant masses.

We examine these effects in more detail in figure 3. Here, we take ΛH = 2.5 and

4.0 TeV and separately study the variation in the Drell-Yan production cross section due

to t and δ. In this computation, the size of the statistical errors in the event rate are

shown by the size of the fluctuations in the binned rate. Holding the parameter t fixed at

t = 1 and varying the number of extra dimensions, we see that the effect of the form factor

is more pronounced and separated for the various values of δ at high invariant masses.

In the formalism employed here, the cross section for graviton exchange is insensitive to

the number of extra dimensions. However, note that here, due to the form factor, the

production rate is larger with increasing (decreasing) values of δ when the lepton pair

invariant mass is less than (greater than) tΛH . Holding δ fixed, we see that decreasing the

value of t sharply increases the effects of the running gravitational coupling, as we would

expect. In fact, for t = 1/2, the contribution of virtual KK graviton exchange is damped to

the point where the event rate lies not far above that of the Standard Model, particularly

– 8 –
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Figure 3: The event rate per bin with 3 ab−1 of integrated luminosity for Drell-Yan production at

the LHC as a function of the lepton pair invariant mass taking the scale ΛH = 2.5TeV (top panels)

and ΛH = 4.0TeV (bottom panels). In the left panels, t = 1 and δ = 2, 3, 4, 5, 6, 7 from top to

bottom on the right-hand side as labeled. In the right panels, δ = 3 and the red, green, blue curves

correspond to t = 2, 1, 0.5. In all panels, the bottom black histogram corresponds to the Standard

Model result, and the top black histogram is the conventional ADD result [20] without the form

factor.

at large invariant masses. However, for t = 2, the change in the event rate is only minor in

comparison to that of the standard ADD model. Hence, as t is varied over its theoretically

expected range, the size of the form factor effect on virtual graviton exchange in models

with large extra dimensions differs greatly.

Given the striking effect of a running gravitational coupling in the Drell-Yan invariant

mass distribution at the LHC, we now address the question of whether the search reach

for the scale ΛH is modified in the presence of the form factor. The 95% C.L. search reach

for the cutoff scale ΛH in this process is presented in figure 4 as a function of t for various

values of δ. We see that for t >∼ 1, the search reach is unaffected by the presence of the

form factor, since the cross section is independent of δ for large values of t. For t . 1,

the reach degrades with decreasing t, but not substantially. For example, the reach in

ΛH decreases by only ≃ 1 TeV when t takes on the value of 0.5. This is due to the large

statistics available at the LHC for lower values of the lepton pair invariant mass, which

coincides with the region where the running coupling has the smallest effect.

We now consider the class of collider processes that involve the real emission of KK

– 9 –
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Figure 4: The 95% C.L. search reach for the fundamental scale M in Drell Yan production at the

LHC as a function of the parameter t. The red curve corresponds to δ = 2, while the δ = 3 and 5

curves lie on top of each other and are represented by the blue curve.

graviton states at the LHC, i.e., the scattering process pp → jet+Gn, where Gn represents

a state in the graviton KK tower [21, 23]. The produced graviton behaves as if it were a

massive, non-interacting, stable particle and once the KK states are summed, it yields a

distribution of missing energy. The specific process kinematics regulate this reaction and

there is no need to introduce a cutoff. This jet plus missing energy signature arises from

the three sub-processes gg, qq̄ → gGn and gq → qGn, and results in a δ−dependent reach

directly on the fundamental scale M . The search reach for this reaction, together with the

SM backgrounds, have been well studied by the authors in [24]; they find, for example,

that if δ = 2 (3, 4, 5, 6) the maximum reach on M at the LHC is 9.1 (7.0, 6.0, 5.5, 5.2)

TeV, respectively, for an integrated luminosity of 100 fb−1. As discussed in the previous

section, a study of the effects of the running gravitation coupling is more complicated for

this reaction as the various sub-processes do not take place at a fixed center of mass energy

and several different scales are present. This introduces an ambiguity in the choice of the

scale µ in the form factor. Here, as examples, we examine two possibilities: µ = Ejet or

pT,jet.

Figure 5 displays the missing energy distribution for the signal at the LHC for this

process with t = 0.5, 1, 2. The top two panels compare the choices µ = Ejet and pT,jet for

fixed values of M and δ. We see that the choice of µ = pT,jet yields a much smaller deviation

from the conventional result without the form factor than does the case of µ = Ejet. In

both cases, sizeable modifications of the distribution only occur when t takes on the value

of 0.5, and become more pronounced at large values of missing ET . This is to be expected

since in general pT,jet < Ejet and the effect of the form factor grows as the scale µ increases

in magnitude. The bottom two panels explore the form factor effects when M and δ are

varied, taking µ = Ejet. Here, we see that this effect is amplified for lower values of M

– 10 –



J
H
E
P
1
2
(
2
0
0
7
)
0
0
9

Figure 5: Missing transverse energy distribution for the signal process pp → jet+ 6 ET assuming

1 ab−1 of integrated luminosity at the LHC. The standard ADD result is given by the black

histogram, while the blue, green, and red data points correspond to the inclusion of the form factor

with t = 2, 1, 0.5, respectively. The other parameters are as labeled. The errors bars represent the

statistical errors.

and larger values of δ, yielding a significantly smaller missing ET distribution than in the

standard case.

Next we examine the total event rate for the signal above a cut on missing ET , as a

function of that cut. Note that strong cuts are required on missing ET in order to suppress

the Standard Model background. Figure 6 compares the choices µ = Ejet and pT,jet for

M = 5 TeV for various values of the parameter t and the number of extra dimensions

δ. Again, larger deviations from the conventional ADD result are obtained in the case

µ = Ejet and the effect of the form factor increases as t becomes smaller. The case of

t = 2 is essentially indistinguishable from the standard ADD result. Figure 7 shows the

consequences for different values of the fundamental scale M . Here, we see that the effects

of a running gravitational coupling are quite significant for smaller values of M , as would

be expected.

We now study the modification to the search reach for large extra dimensions in this

channel. Using the same search criteria as in [24], we examine the case which yields the

largest deviation from the conventional ADD result, i.e., we assume t = 0.5 and take

µ = Ejet, and find that the search reaches are reduced to 9.0 (6.6, 5.3, 4.2, 3.0) TeV, for

δ = 2 (3, 4, 5, 6), respectively. Note that the search reach degradation in comparison

– 11 –
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Figure 6: The excess signal event rate for pp → jet+Gn with 100 fb−1 of integrated luminosity at

the LHC as a function of a cut on missing ET . M = 5TeV, δ = 2, 3, 4, 5, 6 from top to bottom, and

µ = pT,jet, (Ejet) in the top (bottom) panel. The solid curves correspond to the conventional ADD

result and the (invisible) dash-dotted, dashed, and dotted curves are for t = 2, 1, 0.5, respectively.

to the conventional ADD case increases for larger numbers of extra dimensions. Choosing

µ = pT,jet instead, and assuming the same value of t, we find that there are essentially

no modifications in the search reach from the conventional results. For either choice of µ,

taking t ≥ 1, yields no reduction in the ADD search reach in this channel. Thus the ability

to see the jet plus missing energy signature of large extra dimensions remains rather robust

when form factor effects are included, as long as the parameter t is not too small.

Next, we examine the signatures of a running gravitational coupling at the ILC. The

basic processes that are relevant for the ADD scenario are virtual KK graviton exchange

and the direct production of KK gravitons via graviton emission as discussed above for the

LHC.

– 12 –
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Figure 7: The excess signal event rate for pp → jet + Gn with 100 fb−1 of integrated luminosity

at the LHC as a function of a cut on missing ET . δ = 2, 3, 4, 5, 6 from top to bottom, µ = Ejet, and

M = 3, (7)TeV in the top (bottom) panel. The solid curves correspond to the conventional ADD

result and the (invisible) dash-dotted, dashed, and dotted curves are for t = 2, 1, 0.5, respectively

We first consider the case of graviton exchange in the reaction e+e− → f f̄ . At the√
s = 500 GeV ILC, the search reach for the cutoff ΛH in the conventional ADD model

is approximately 5 TeV [20, 25], independent of the value of δ, assuming an integrated

luminosity of 500 fb−1 and 80% electron beam polarization. Since
√

s is fixed in this

channel, the implementation of the form factor is straightforward and proceeds as discussed

above. The modifications in the cross section as a function of
√

s in the presence of the

form factor are illustrated in figure 8, for various values of δ and the parameter t, taking

ΛH = 2 TeV. We see that the behavior of the cross section is similar to that of the invariant

mass distribution for Drell-Yan production at the LHC; the effects are more pronounced

at small values of t and track the Standard Model result for t = 0.5. Note that again the

– 13 –
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Figure 8: The cross section for e+e− → f f̄ as a function of
√

s with ΛH = 2TeV. The solid,

dashed, and dotted sets of curves correspond to the parameter t = 2, 1, 0, 5, respectively, and

δ = 2, 3, , 4 , 5, 6 correspond to the curves in each set from top to bottom on the right-hand side.

The solid black curves at the top (bottom) represent the conventional ADD (Standard Model) result

for this channel.

dependence on δ reverses as the threshold
√

s = tΛH is passed. At large enough values

of
√

s, the cross section for t = 2 starts to turn over, displaying the onset of unitarity as

discussed above. For this value of ΛH , a higher center-of-mass energy is clearly beneficial

in order to detect the presence of the form factor.

Since the implementation of the form factor is straightforward, the modification to the

search reach can be derived analytically. We find (denoting the search reach with running

coupling as ΛFF
H )

Λ4
H = (ΛFF

H )4 + (ΛFF
H )−δ+2

(√
s

t

)δ+2

, (3.3)

which can be easily solved numerically. If the parameter t ≥ 1, we find that ΛFF
H does

not differ from ΛH by more than 0.5% for any value of δ. If, however, t = 0.5 and δ ≥ 5

there is a reasonable search reach degradation; in particular, we find, for δ = 5 (6, 7) that

ΛFF
H = 4.77 (4.20, 3.44) TeV.

The last channel for us to consider is graviton emission at the ILC, which proceeds via

the reaction e+e− → γ + Gn. The effect of running gravitational couplings on the missing

energy cross section are shown in figure 9 as a function of
√

s. In this figure, we take

µ = Eγ as the analogous choice was found to lead to the largest deviations at the LHC.

We see that deviations from the conventional result are only observable for t = 0.5, which

somewhat lowers the cross section at larger values of
√

s. Since this process is typically

employed as a means to determine the number of extra dimensions, the existence of a form

factor would in principle interfere with this determination.

An analytical analysis can also be applied for this process since the center-of-mass

energy is fixed. In the usual case, the rate for graviton emission scales as M−(2+δ) and
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Figure 9: The cross section for e+e− → γ+ 6 ET from KK graviton emission as a function of
√

s,

taking µ = Eγ . All curves are normalized to the value of the cross section at
√

s = 500GeV with

M = 2.5TeV and δ = 2. The (invisible) dash-dotted, dashed, and dotted curves correspond to

t = 2, 1, 0.5, while the blue, green, and red sets of curves represent δ = 4, 3, 2. The solid curves

represent the conventional ADD cross section.

one can obtain the reach for any given value of δ in a straightforward manner [21, 23].

Equating the signal rate that yields the search limit in the conventional ADD case to the

rate in the presence of the form factor, yields a relation between the search reaches with

and without a running gravitational coupling. Denoting MFF as the search reach with the

form factor, we have

M δ+2 = (MFF )δ+2 −
(√

s

t

)δ+2

, (3.4)

where here we have chosen µ2 = s to maximize the effect of the form factor. Since values

of M are in the multi-TeV range, we find that MFF = M to the high accuracy of ∼ 0.1%

or better for t ≥ 0.5. For example, with δ = 2 (6) the traditional reach is given by M =

8.3 (2.9) TeV [19, 21, 23]. Taking t = 0.5 for these cases we obtain MFF = 8.298 (2.898) TeV

when the form factor is present. Choosing a smaller and perhaps more realistic value of

µ, such as the photon energy, we see that the corresponding change in the ILC discovery

reach is even further reduced. Thus to a very good approximation, a running gravitational

coupling is seen to have very little effect on ILC search reaches for ADD model signatures.

4. Warped extra dimensions

In the RS model [16], the S1/Z2 orbifolded, slice of 5-dimensional space bounded by two

branes is described by a non-factorizable metric

ds2 = e−2k|y|ηµνdxµdxν − dy2 , (4.1)

with ηµν being the flat Minkowski metric. The two branes are separated by a distance πrc,

with one being located at y = 0 (known as the UV brane), and the other at y = πrc (the
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IR brane). The warp factor, ǫ = e−πkrc, generates the hierarchy between the Planck and

electroweak scales when krc ∼ 11. The curvature parameter k satisfies k ∼ M ∼ MP l with

0.01 . c = k/MP l . 0.1 [26].

In order to keep things simple, we limit ourselves to the case where the SM fields are

localized to the IR brane; we can then concentrate on the gravitational sector of the theory

and readily compare results with the classic RS model. In this case, the principle collider

signal for the RS model is the resonant production of spin-2 KK gravitons [26]. The KK

masses are given by mn = xnkǫ where xn are the roots of the J1 Bessel function, and they

couple to the Standard Model fields with electroweak strength. Since the KK gravitons are

directly produced in the s-channel in this scenario, the form factor describing the running

gravitational coupling can be written as

F−1 = 1 +

( √
s

tMǫ

)3

, (4.2)

where we have set µ =
√

s.

It is interesting to first consider the ratio of width to mass for the graviton KK states

as n increases. In the standard RS picture,

Γn

mn
= Nc2

(

mn

kǫ

)2

= Nc2x2
n , (4.3)

where N is a fixed numerical factor ≃ 5/16π. For a fixed value of c we observe that this

ratio grows significantly as n increases, and at some point the very idea of a graviton

resonance is lost. On the resonance peak for a KK graviton, the form factor given above

can be written as

F−1 = 1 +

(

mn

tMǫ

)3

= 1 + [xnc2/3/t]3 , (4.4)

where the last equality follows from the relation M3 = kM
2
P l. We now see that width

scales as

Γn = Nkǫc2x3
n

[

1 + c2x3
n/t3

]−1
. (4.5)

As xn gets large we now find

Γn ≃ Nkǫt3 , (4.6)

which is independent of both c and n. Thus the form factor prevents the widths of the KK

graviton states from growing too large and a well-defined resonance structure is maintained

for every level in the KK tower. We also see that the parameter t plays an important role

in determining the graviton width; however, a problem may still arise if the value of t is

too large.

To determine the range of the parameter t that is allowed by perturbative unitarity

in the RS model, we again study the 2 → 2 scattering process hh → hh at high energies.

The KK tower of gravitons contribute to this process via s-, t- and u-channel exchanges.

Including the form factor and summing over the first 10,000 states in the graviton KK

tower, we obtain the results displayed in figure 10 for the J = 0 partial wave amplitude for

this channel. In this figure, we show the value of 2Re|a0| as a function of the ratio
√

s/m1
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Figure 10: The J = 0 partial wave amplitude for hh → hh as a function of the ratio
√

s/m1,

summing over the first 10,000 KK graviton states in the RS model in the presence of the form

factor. We set c = 0.05. The green, dark blue, magenta, cyan, and black curves correspond to the

values t = 1, 2, 3, 4 and 5, respectively. The red curve represents the conventional RS rsult.

(where m1 is the mass of the first graviton KK state) for several values of t assuming

c = 0.05. It is clear that this amplitude is well-behaved and 2Re|a0| is always less than

unity when t ≤ 2. However, at very high energies, it appears that the amplitude starts to

grow for t ≥ 3 and will eventually violate perturbative unitarity. We find that these results

do not change appreciably as c is varied. Note that the presence of the form factor greatly

dampens this amplitude compared to the standard RS result.

The effects of the form factor in the production of graviton KK resonances in the

Drell-Yan channel at the LHC are shown in figure 11. Here we see the familiar pattern

that, in the standard RS picture, the resonances get wider and wider as the level increases

in the KK tower and the resonance structure is completely lost above n = 3− 4 depending

upon the value of c. Turning on the form factor and taking smaller values of t, we do

not lose too much of the apparent signal peak, but the towers separate and become more

narrow for large n. Certainly, for t . 2 the resonance structure is always quite clean for the

range of KK tower masses shown in the figure. Note that if RS graviton KK resonances are

observed and such form factors are present, the value of t will be relatively easy to extract

from the cross section data.

The effect of the form factor on the widths of the KK graviton resonances become even

more obvious at multi-TeV scale e+e− colliders such as CLIC [27]. Figure 12 shows the

cross section for the process e+e− → µ+µ− as a function of
√

s with m1 = 600 GeV. In the

upper panel we assume c = 0.05 and see the loss of resonance structure and the potential

unitarity violation in the conventional RS model and how this situation is tamed by the

presence of a form factor. Certainly for t . 2 we see that the narrow resonance structure is

maintained for all levels of the KK tower. In the lower panel, for fixed t = 1, it is clear that

the graviton KK resonances are all quite narrow and are essentially c and n independent,

– 17 –



J
H
E
P
1
2
(
2
0
0
7
)
0
0
9

Figure 11: RS graviton resonance production in the Drell-Yan channel as a function of the dilep-

ton pair invariant mass at a high luminosity LHC assuming m1 = 1 TeV and c = 0.1(0.04) in the

upper(lower) panel. The lowest(yellow) histogram in the SM background while the outermost(red)

histogram is the usual RS prediction. From outside going inwards the next five histograms corre-

spond to t = 4(3, 2, 1, 0.5), respectively. In all the form factor cases the scale is assumed to be the

dilepton pair mass M .

even for high levels in the KK tower. Only for the lightest KK state do we see dependence

on c and even in this case it is rather weak. From these figures we can see that the form

factor modifies the cross section as advertised.

5. Summary and discussion

The poor high energy behavior of General Relativity observed in perturbation theory may

be cured if there exists a non-Gaussian fixed point rendering the theory asymptotically

safe and potentially non-perturbatively renormalizable. If such a possibility is realized, the
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Figure 12: Cross section for e+e− → µ+µ− as a function of
√

s in the RS model with c = 0.05

and m1 =600GeV showing the first 7(9) graviton KK excitations in the top(bottom) panel. In

the top panel, the uppermost curve corresponds to the standard result. Moving inward the curves

correspond to the case where a form factor is present assuming t = 4(3, 2, 1, 0.5), respectively. In

the lower panel, t = 1 has been assumed for very large values of c = 0.1, 0.2 and 0.3, with the

narrowest resonance curve corresponding to the smallest value of c.

effective gravitational coupling at high energies becomes weaker and this running can be

parameterized through the introduction of a form factor when calculating the interactions of

gravitons with matter or each other. These form factors can also modify graviton exchange

amplitudes rendering them unitary at tree-level. The evidence that such a situation may

be realized in nature is reasonably strong and has improved theoretically in recent years.

However, since the effect of the form factor is only significant once the relevant energies
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approach the fundamental scale of gravity, in 4-dimensions it will be difficult to test this

possibility directly anytime in the near future.

Extra-dimensional scenarios of the ADD or RS type allow for the fundamental scale

to be not far above ∼ 1 TeV. If such scenarios are realized, the existence of gravitational

form factors can then be probed at future colliders such as the LHC and/or the ILC. In

this paper we have shown that this is indeed the case for both these scenarios.

The analysis of Reuter et al. [12] and of Litim [14] suggests a very specific structure for

this form factor which is totally determined in D-dimensions up to an order one coefficient,

t. We find that imposing tree-level unitarity requirements on graviton exchange amplitudes

in either the ADD or RS models implies that the range of t is restricted: t . 2. In both of

these models, graviton exchange processes were shown to be particularly sensitive to the

presence of these form factors. In particular, we demonstrated that measurements at both

the LHC and ILC can be used to extract the value of t. In the RS model, the width of

graviton resonances, which ordinarily increases at higher levels of the KK tower, was shown

to asymptote to a constant value when form factors are employed. On the otherhand, the

process of graviton emission which occurs in the ADD scenario, was shown to be rather

insensitive to the presence of form factors. Interestingly, the collider search reaches for

extra dimension was also shown to not be overly sensitive to form factor contributions in

both the ADD and RS cases.

If these extra dimensional scenarios are realized in Nature, then hopefully the obser-

vation of form factor effects will be observed, thus providing us with an important handle

on the underlying theory of quantum gravity.
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